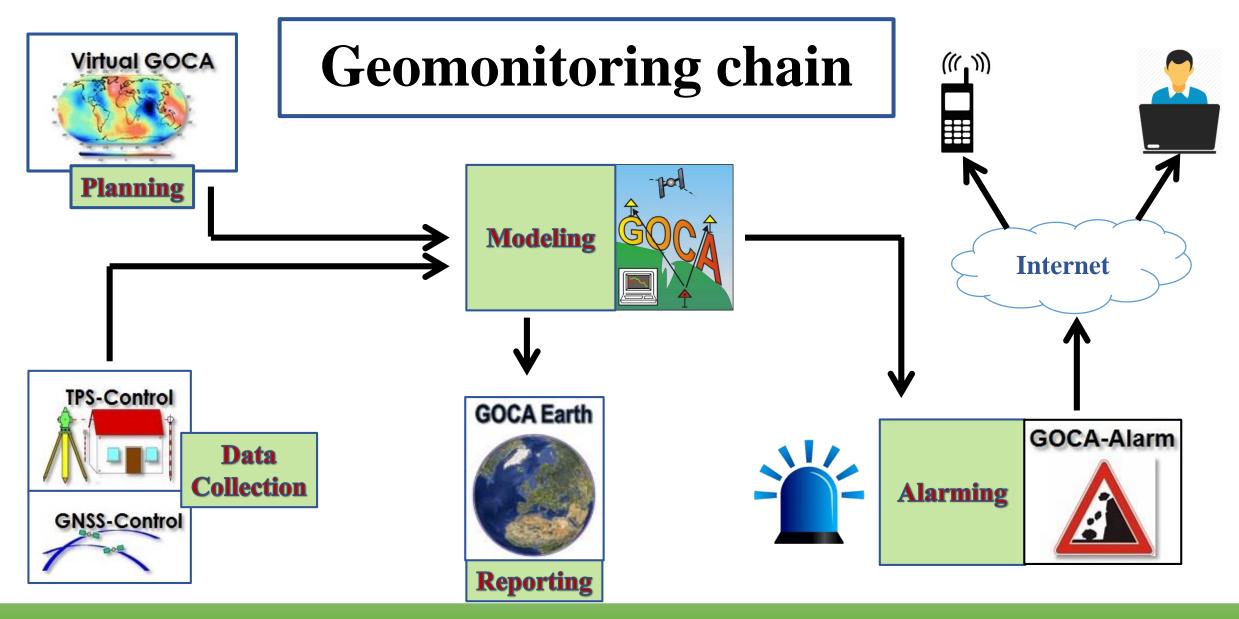


Model- and Sensor-Integration for an Integrated 3D Geomonitoring in a **Modern Data Communication Structure** with Applications to the **Stuttgart TV Tower**



Hochschule Karlsruhe Technik und Wirtschaft UNIVERSITY OF APPLIED SCIENCES

Content

- 1. Introduction to the structure of the deformation analysis software GOCA
- 2. Integrated & quasi-integrated 3D approach
- 3. Design of the Stuttgart geomonitoring project from the software point of view
- 4. Organizational design of the IT architecture in Stuttgart geomonitoring project
- 5. Further development plans
- 6. Live demonstration of the running project

Integrated & Quasi-Integrated Approach

Usage of integrated and quasi-integrated 3D adjustment in order to integrate all sensor data types in geometry and gravity.

Direct observation equation in integrated 3D approach

Parametrisation of GNSS observations in quasi-integrated approach

Farther steps of integration:

- Detection of pixels of video tachymeters
- Laser scanner point clouds processing

$$b^{T} = (\Delta x_{ij}, \Delta y_{ij}, \Delta z_{ij})$$

$$\Delta H_{ij} = (h(x, y, z)_{j} - N_{j}) - (h(x, y, z)_{i} - N_{i})$$

$$l = l(x, z, \overline{p}(W(x, p, c))), C_1$$
Quasi-Integrated 3D-Approach

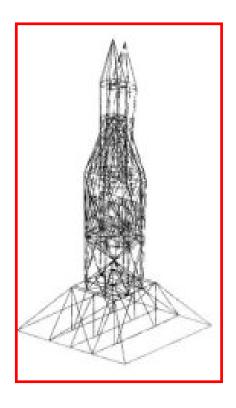
Reparametrization \overline{p} and \overline{A}

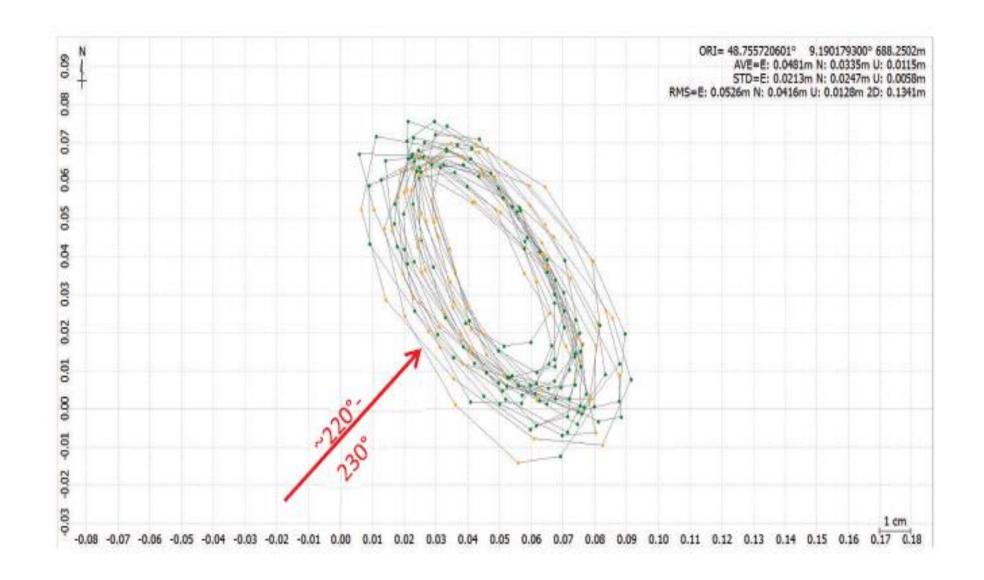
Horizonal Component
of the
Gravity Field
$$\phi(W(x, p, c)) = \arctan(\frac{W_z}{\sqrt{W_x^2 + W_y^2}})$$

$$\lambda(W(x, p, c)) = \arctan(\frac{W_y}{W_x})$$

Vertical Component of the
Gravity Field
$$N(W(x, p, c)) = \frac{(W - U)_P}{\gamma_{h(x, y, z) - N}}$$

Transition Quasi-Integrated to
Integrated 3D-Adjustment
$$\ddot{U}(i, j) = \frac{\partial \overline{p}(p, c)_i}{\partial p_j} \quad A = \overline{A} \cdot \ddot{U}$$

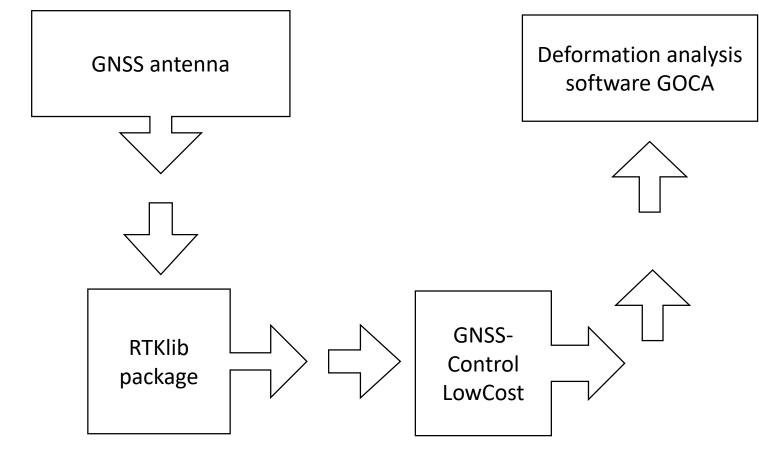

$$y(t) = [x^{e} y^{e} z^{e} | v_{x}^{e} v_{y}^{e} v_{z}^{e} | r^{e} p^{e} y^{e} || \ddot{x}^{e} \ddot{y}^{e} \ddot{z}^{e} | \omega_{eb,x}^{b} \omega_{eb,y}^{b} \omega_{eb,z}^{b}]^{T}$$


The sensory scanning of objects in a dynamic state, using the FEM-based vibrational equations Forced damped vibration & free damped eigen-vibration of a structure

> $K(p_K) \cdot u(t) + C(p_C) \cdot \dot{u}(t) + M(p_M) \cdot \ddot{u}(t) = f(t)$ $K(p_K) \cdot u(t) + C(p_C) \cdot \dot{u}(t) + M(p_M) \cdot \ddot{u}(t) = 0$

Basic equation for the SHM modeling

$$\begin{bmatrix} u_0(t+\Delta t)\\ \dot{u}_0(t+\Delta t)\\ \ddot{u}_0(t+\Delta t) \end{bmatrix} = \begin{bmatrix} I & [\Delta t] & [\frac{1}{2}\Delta t^2]\\ 0 & I & [\Delta t]\\ 0 & [-M(p_M)^{-1} \cdot K(p_K) \cdot \Delta t] & [I-M(p_M)^{-1} \cdot C(p_C) \cdot \Delta t] \end{bmatrix} \cdot \begin{bmatrix} u_0(k)\\ \dot{u}_0(k)\\ \ddot{u}_0(k) \end{bmatrix}$$


Definition of the project task

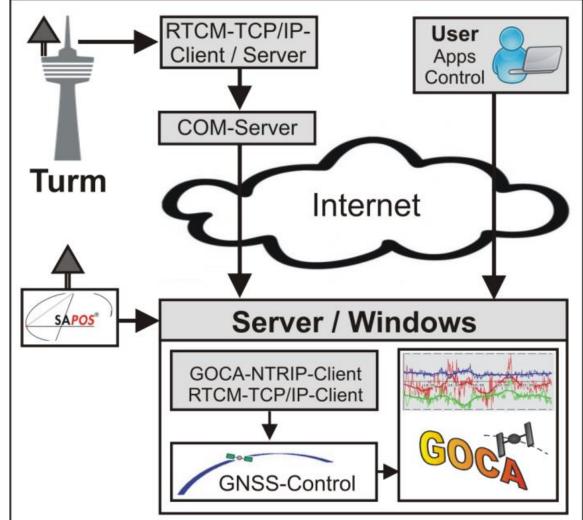
Usage of reference object for implementation of innovative methods for the early detection of hazard potentials of structures (SHM) by new algorithms, sensor systems and information technologies

As a reference object Stuttgart TV tower is used. The popularity of the object among the citizens allows to increase the visibility of the idea of geomonitoring.

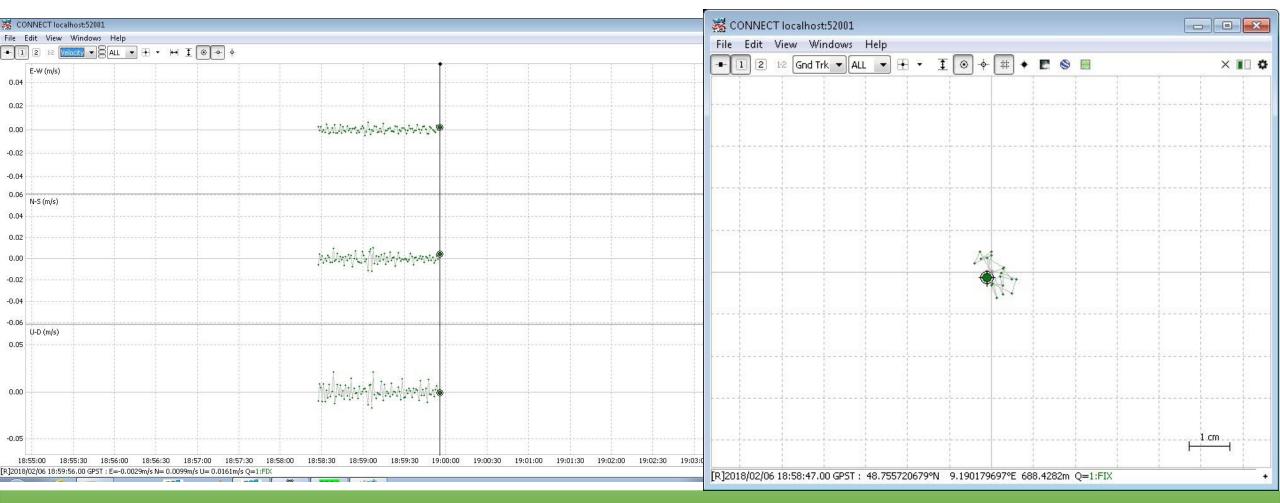
The intercation of the individual chain elements from the software modules point of view

Procedure of data collection and processing

1. Computation of exact object's position based on the raw GNSS data


2. Data collection based on the fixed solution in respect to the object point positioning

3. Creation of GKA interface with accurately precomputed object coordinates.


4. Visualization of time series for TV tower's rotations in deformation analysis software GOCA

System organizational design in respect to the relationship between different parts of the complete chain

- Support of object's monitoring from 3 sides:
- 1) Provision of the IT service
- 2) Provision of the spatial reference
- Provision of the complete geodetic solution & mathematical algorithms for data processing

Object point positioning based on the raw data

"Geodynamics & Geospatial research" conference, Riga 08.02.2018

GOCA Team, HSKA University of Latvia

Initialization of raw data in deformation analysis software GOCA

	t View Help	
*********	******************	*******
***		***
***	GOCA – ADJUSTMENT	***
***		***
***	PLANE COMPONENT	***
***		***
*********	***************************************	********
Computation T	imo, 07 07 7018 77,07,06	
Network Desig	ime: 07.02.2018 22:07:06	
Network Desig	11.	
stable_/ Defe	rence Points (Number = 1):	
Sapos	rence Fornes (Number – I).	
Sahos		
Object Doints	(Number = 1):	
Turm	(Namber – 1).	
r ur m		
Used Epoch:		
Start Date 0	3.01.2018 21:54:03	
Deale Date. V	3.01.2018 23:59:59	
End Date : 0		
End Date : 0	ervations: 11278	
End Date : 0	ervations: 11278	
End Date : 0 Number of Obs	ervations: 11278	
End Date : 0 Number of Obs		
End Date : 0 Number of Obs		

Init_Plane - Notepad							
E 111	-						

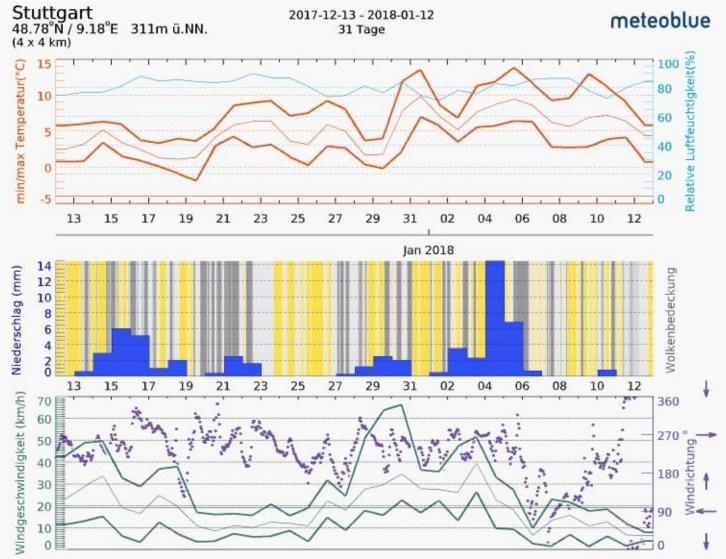
File Edit Format View Help

ADJUSTMENT NO: 11

Number of Observations: 11258 Number of Unknowns: 4 Redundancy (n-u+d): 11256 Statistical Parameters:

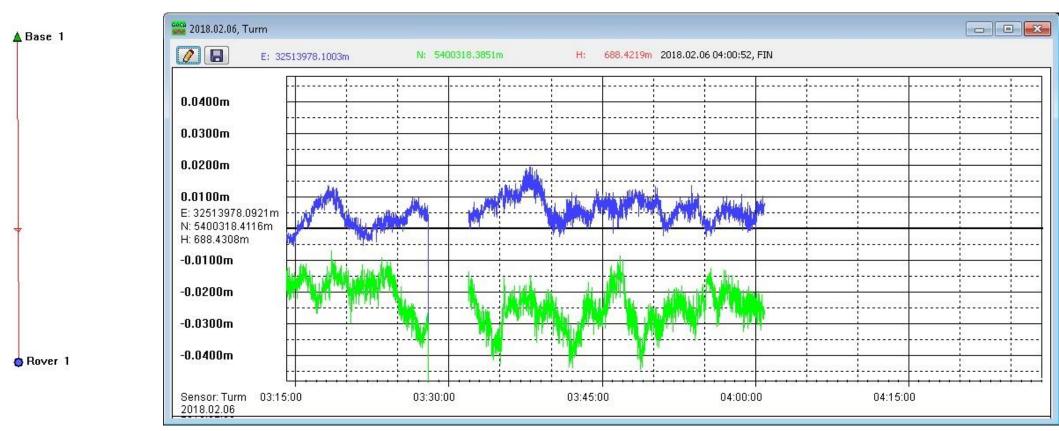
Alpha-NV [%]	<u> </u>	1.0
Matched Error Probability:		
Alpha-Plane [%]	=	2.3
Crit. Value Plane	=	3.762
Alpha-Height [%]	=	1.0
Crit. Value Height	=	2.577

No Observation was rejected in this Run!


***			***
*** FINAL -	ADDUS	FMENT	***
***			***
*********************	******	****************	*******
sO priori	=	0.0050	
s0 priori s0 posteriori	=	0.0050	
Global test (test value)	2	1.0000	
Global test (test value) Global test (critical value)		0.9788	
alobal test (chitical value)	-	0.9788	
Mean Point Error	=	0.0029	
Redundancy r = (n-u+d)	=	11256	

GNSS Observations - relative

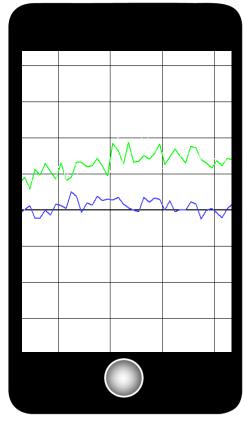
"Geodynamics & Geospatial research" conference, Riga 08.02.2018

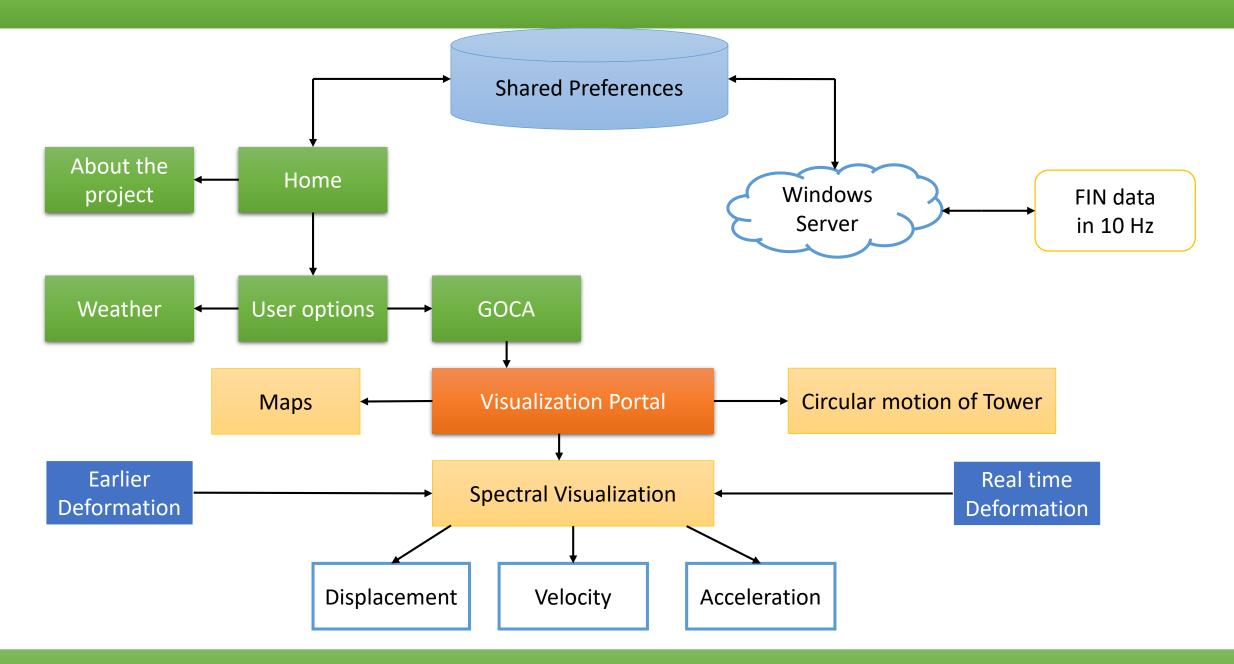

GOCA Team, HSKA **University of Latvia**

Meteodata for the area of Stuttgart city in January 2018

Visualisation of Stuttgart TV tower point time series for deformation state estimation and analysis

Name Stuttgart_Fernsehrturm_03-Januar-2018, Projection UTM, Dimension: Plane+Height (2D+1D), Sensors GNSS 2018.01.03 21:54:03, Initialisation




Android application for external use

Further project development based on the Android system in order to provide the continuous access to the visualization results of the monitoring for citizens and tourists.

- Algorithmic conversion of 1Hz FIN data to 10 Hz
- Development of the data management system, based on the object server, for access to the data from any Android system compatible devices

App architecture

Instead of live demonstration

Autors:

- 1. Prof. Dr.-Ing. Reiner Jäger, Karlsruhe University of Applied Sciences, Institut für Angewandte Forschung (IAF)
- 2. Dipl.-Ing. Naznin Akter, Karlsruhe University of Applied Sciences Institut für Angewandte Forschung (IAF)
- 3. Dipl.-Ing. Lyudmila Gorokhova, Karlsruhe University of Applied Sciences Institut für Angewandte Forschung (IAF)
- 4. Dipl.-Ing. Eberhard Messmer, Ingenieurbüro für Angewandte Geodäsie, Photogrammetrie und Geoinformatik, Beratende Ingenieure

Thank you for your attention!